entry	alkene	method ^a	reactn time, h	KHSO₅, ^b equiv	product		yield, ^c %
1	cyclohexene	В	5	2	1,2-epoxycyclohexane (4)		62
2	cycloheptene	В	4	2	1,2-epoxycycloheptane (5)		91
3	cyclooctene	Α	4	1.5	1,2-epoxycyclooctane (6)		94
4	$\begin{array}{c} \text{cyclodecene} \\ E + Z \end{array}$	A or B	5	2	no reaction		
5		B B	5 5	1 2	$ \begin{array}{c} 0 \\ 7 (46\%) \\ 7 (40\%) \end{array} + \begin{array}{c} 0 \\ 8 (21\%)^{d} \\ 8 (60\%)^{d} \end{array} $		
		В	5	5			78
6	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	В	5	2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	9	63
7		C or B	5	2	Ph 0 CO ₂ H	10	10 <i>°</i>
8	CO2H	С	1	2	о со _г н	11	84
9	- CN	А	3	1.5	0 Jun CN	12	93

Table I. Reaction of Alkenes with Potassium Hydrogen Persulfate

^a All the reactions were performed at room temperature: method A, oxone in water added to alkene in methanol, uncontrolled pH; method B, same as A, but pH 6; method C, oxone and alkene in water, pH 6. ^b An excess of potassium hydrogen persulfate is necessary, due to competitive peroxide decomposition.⁷ ^c Yields are given for isolated epoxides unless noted otherwise. d The ratio 7/8 were evaluated by 'H NMR and GLC coupled with a mass spectrometer; when 1 equiv of KHSO, was used, 4-vinylcyclohexene was also present in the reaction mixture. ^e Yields evaluated by ¹H NMR.

AG CH-9100 Herisau combi titrator. Oxone is a stable powder containing 2 mol of KHSO₅, 1 mol of K₂SO₄, and 1 mol of KHSO₄ and is sold in Europe by Aldrich. Cyclohexene, cycloheptene, cyclooctene, cyclododecene, 4-vinylcyclohexene, trans-cinnamic acid, and sorbic acid were commercial products. 2-Cyanobicyclo[2.2.1]hept-5-ene and 4-thiatricyclo[5.2.1.0^{2,6}]dec-8-ene were prepared following reported procedures.^{6,8}

All the epoxides, but the sulfone 3, were known compounds and had spectral data that where identical with those given in the literature^{2,9-11} or with those of commercial samples.

Epoxy sulfone 3 obtained in 86% yield (method A) after column chromatography; recrystallized (CH₃CO₂Et/n-hexane, 4/1): mp 241-242 °C; ¹H NMR (CDCl₃) δ 3.27 (br s, 2 H), 2.65-3.65 (m, 8 H), 1.5-1.8 (m, 1 H), 0.8-1.1 (m, 1 H); ¹³C NMR (CDCl₃) & 48.4, 48.2, 38.2, 37.7, 26.8; IR (CHCl₃) 2960, 1315, 1215, 1140, 850 cm⁻¹.

Anal. Calcd for C₉H₁₂O₃S: C, 53.98; H, 6.04; S, 16.01. Found: C, 53.73; H, 5.99; S, 16.02.

Typical Procedures. Method A. A solution of oxone (4.62 g, 15 mmol of KHSO₅) in water (20 mL) was added in one portion to a solution of cyclooctene (1.1 g, 10 mmol) in methanol (20 mL). The reaction mixture was then magnetically stirred during 4 h at room temperature. After addition of water (50 mL), the solution was extracted with methylene chloride $(2 \times 20 \text{ mL})$. The extracts were dried (MgSO₄) and the solvent removed in vacuo, affording 1.19 g (94%) of 9-oxabicyclo[6.1.0]nonane (6) having spectra identical with those of a commercial sample (mp after sublimation 56 °C, lit.¹² mp 56-57 °C).

Method B. A solution of cycloheptene (960 mg, 10 mmol) in methanol (20 mL) was added in 5 min to a solution of oxone (6.15 g, 20 mmol of KHSO₅) in water (50 mL). Before the addition was started the pH was adjusted to 6 and it was monitored with a pH electrode and kept at this value during the entire reaction by dropwise addition of KOH (1 M in water). The reaction mixture was stirred for an additional 4 h and extracted with methylene

chloride (2 \times 20 mL). The organic layer was dried (MgSO₄) and the solvent was removed on a rotatory evaporator. The residue was bulb-to-bulb distilled at 85 °C (50 mm) to give 1.02 g (91%) of 8-oxabicyclo[5.1.0]octane (5), giving spectra identical with those of a sample prepared by a reported procedure.¹³

Method C. A solution of oxone (6.15 g, 20 mmol of KHSO₅) in water (20 mL) was added in one portion to a solution of sorbic acid (1.12 g, 10 mmol) in water (20 mL) while the pH was kept at 6 by addition of aqueous 1 M KOH. After 1 h of stirring, the pH remained constant without KOH addition. The solution was acidified to pH 1 (12 N HCl) and continuously extracted with ether during one night. The ether extract was dried $(MgSO_4)$ and the solvent was removed, affording 1.10 g (84%) of 4,5-epoxy-2-hexenoic acid (11) pure by ¹H NMR. A sample purified by crystallization (CCl₄/n-hexane) had mp 82 °C (lit.² mp 81–83 °C).

Registry No. 1, 2434-67-5; 2, 83947-07-3; 3, 95722-43-3; 4, 286-20-4; 5, 286-45-3; 6, 286-62-4; 7, 106-86-5; 8, 106-87-6; 9, 53897-32-8; 10, 1566-68-3; 11, 74923-21-0; 12, 18776-20-0; KHSO5, 10058-23-8; (Z)-cyclododecene, 1129-89-1; 4-vinylcyclohexene, 100-40-3; sorbic acid, 110-44-1; cyclohexene, 110-83-8; cycloheptene, 628-92-2; cyclooctene, 931-88-4; (E)-cyclododecene, 1486-75-5; 3-heptene, 592-78-9; trans-cinnamic acid, 140-10-3; bicyclo-[2.2.1]hept-5-ene-2-carbonitrile, 95-11-4.

(12) Cope, A. C.; Fenton, S. W.; Spencer, C. F. J. Am. Chem. Soc. 1952, 74. 5884.

(13) Gerkin, R. M.; Rickborn, B. J. Am. Chem. Soc. 1967, 89, 5850.

Diels-Alder and Retro-Diels-Alder Reactions: From N'-(Thioacyl)formamidines to Thio Amide Vinylogues

Célestin Tea Gokou, Jean-Paul Pradère, and Hervé Quiniou*

Laboratoire de Chimie Organique, U.A. au C.N.R.S. 475, 44072 Nantes Cedex, France

Received October 11, 1984

As part of our continuing study of the chemistry of sulfur-containing heterocycles, we have developed and generalized the cyclocondensation reactions of N'-(thio-

⁽⁷⁾ Edwards, J. O.; Pater, R. H.; Curci, R.; Difuria, F. Photochem. Photobiol. 1979, 30, 63.

⁽⁸⁾ Stetter, M.; Landscheit, A. Chem. Ber. 1979, 112, 1410.

⁽⁹⁾ Brown, P.; Kossanyi, J.; Djerassi, C. Tetrahedron, Suppl. 1966, 8, 241

⁽¹⁰⁾ Shaskov, A. S.; Cherepanova, E. G.; Kas'yan L. I.; Gnedenkok, L. Y.; Bombushkan, M. F. Bull. Acad. Sci. U.S.S.R., Div. Chem. Sci. 1980, 29, 382.

⁽¹¹⁾ Carlson, R. G.; Behn, N. S.; Cowles, C. J. Org. Chem. 1971, 36, 3832.

acyl)formamidines and characterized the products of thermolysis of the adducts obtained.

Diels-Alder reactions of azadienes affording either the corresponding heterocyclic compounds or their cycloreversion products have been recently reported.¹ However, there have been few reports concerning heteroazadienes containing an atom of oxygen² or sulfur.³ In the course of a preliminary study,⁴ we showed that it was possible to obtain 4,5-dihydro-6H-1,3-thiazines 2 or 6H-1,3-thiazines 3 from N'-(thioacyl) formamidines 1 via a 4 + 2 cyclocondensation reaction using various acrylic compounds (Scheme I). Yields of compounds 3a and 3b were optimized (98% yield) by carrying out the reaction in an autoclave (140 °C) in the presence of methyl vinyl ketone. An acid catalyst is needed in order to obtain 3c from 1c. The conversion of 4,5-dihydro-6H-1,3-thiazine (2) to 6H-1,3thiazine (3a) proceeds via a cycloreversion reaction on heating 2 (autoclave 140 °C) in the presence of excess methyl vinyl ketone (Scheme I).

We have extended the scope of this investigation by studying the cyclocondensation reactions between N'-(thioacyl)formamidines and acetylenic compounds. At room temperature, compounds 1 react stoechiometrically with dimethyl acetylenedicarboxylate (4a, $R^6 = CO_2CH_3$), affording 4H-1,3-thiazines 5 (Scheme II). The reactivity of 1 depends on the nature of the substituent R^4 (1b > 1a > 1c). 4H-Thiazine compounds are thus obtained in excellent yields. We did not obtain five-membered heterocycles as has been observed for 1-thia-3-aza-1,3-butadienes substituted in position 4 by an aromatic^{3a} or electron-attracting group.^{3b}

An increase in the reaction temperature gives rise to the thermolysis of the 4H-1,3-thiazines via a cycloreversion-type reaction.⁵ Thus, on heating **5a** in refluxing methylene

chloride, benzonitrile ($\bar{\nu}_{CN}$ (CCl₄) = 2220 cm⁻¹) is liberated and the thio amide vinylogue **6a** is isolated (Scheme III), in which the functional groups in positions 2 and 3 are those of acetylene **4a**. In this cycloreversion reaction the formation of the nitrile instead of the starting acetylene is in agreement with the literature.⁶

The 4*H*-thiopyran 7 can be obtained directly by prolonged heating of N'-(thioacyl)formamidine (1a) in excess 4a (Scheme III). The reaction of thio amide vinylogues⁷ with acetylenic compounds such as dimethyl acetylenedicarboxylate is well-known.⁸

Heating **5b** in refluxing toluene does not give the corresponding thio amide vinylogue **6b**. However, under these conditions the cycloreversion of **5c** to **6c** is observed but thio amide vinylogue **6c** is not isolated; the reaction instead gives a product of cyclic rearrangement (the tertiary amine effect),⁹ which is the object of a further study.

The reaction of methyl propiolate (4b) with 1a affords 4H-1,3-thiazine (5d). On heating a solution of 5d, we did not observe the amine transposition reported for the 4H-thiopyran homologues⁸ but instead observed a cycloreversion reaction liberating thioaldehyde 6d. This compound, on addition of methyl vinyl ketone, affords the 2H-thiopyran 8 ($J_{\rm H^4-H^6} = 0.5$ Hz). The position of the methoxycarbonyl group in 8 confirms the direction of the addition of 4b to 1a. In this case the yield is superior to that obtained for the addition of unsymmetrical acetylenic compounds to 1-amino-2-azadienes.¹⁰

The cyclocondensation reaction of N'-(thioacyl)formamidines 1 is general and leads specifically to functionalized 4,5-dihydro-6*H*-1,3-thiazines and 6*H*-1,3-thiazines.¹¹ The thermolysis of 5 is a novel example of the application of cycloreversion reactions in organic synthesis,¹² linking the chemistry of N'-acylthio imines 1 to that of functionalized thio amide vinylogues 6.

Experimental Section

¹H NMR spectra were recorded on 60-MHz (Perkin-Elmer R 24) and 250-MHz (Bruker) instruments. ¹³C NMR spectra were determined on a 90-MHz (Bruker WH 90) spectrometer. Me₄Si was used as internal reference. Mass ion kinetic energy (MIKE) and collision ion detection (CID) MIKE mass spectra were re-

⁽¹⁾ Boger, D. L. Tetrahedron 1983, 39, 2869.

 ^{(2) (}a) Zaugg, H. E. Synthesis 1970, 49. (b) Schmidt, R. R. Synthesis
 1972, 333. (c) Desimoni, G.; Tacconi, G. Chem. Rev. 1975, 75, 651.

^{(3) (}a) Giordano, C. Gazz. Chim. Ital. 1975, 105, 1265. (b) Burger, K.; Hubert, E.; Schöntag, W.; Ottlinger, R. J. Chem. Soc., Chem. Commun. 1983, 945.

^{(4) (}a) Meslin, J. C.; Quiniou, H. Bull. Soc. Chim. Fr. 1979, 7-8, 347.
(b) Pradère J. P.; Rozé, J. C.; Duguay, G.; Guevel, A.; Tea Gokou, C.; Quiniou, H. Sulfur Lett. 1983, 1, 115.

⁽⁵⁾ Sauer, J.; Sustmann, L. Angew. Chem., Int. Ed. Engl. 1980, 19, 779.

^{(6) (}a) Neunhoeffer, H.; Werner, G. Liebigs. Ann. Chem. 1974, 1190.
(b) Liotta, D.; Saindane, M.; Ott, W. Tetrahedron Lett. 1983, 24, 2473.

⁽⁷⁾ Quiniou, H. Phosphorus Sulfur 1981, 10, 1.
(8) Rasmussen, J. B.; Shabana, R.; Lawesson, S. O. Tetrahedron 1982,

⁽a) realized of realized of real and real of real of real and real of real and real of real and real of real and real of real o

 ^{(9) (}a) Verboom, W.; Reinhoudt, D. N.; Visser, R.; Harkema, S. J. Org. Chem. 1984, 49, 269.
 (b) Verboom, W.; Hamzink, M. R. J.; Reinhoudt, D. N.; Visser, R. Tetrahedron Lett. 1984, 25, 4309.

 ^{(10) (}a) Gommper, R.; Heinemann, U. Angew. Chem., Int. Ed. Engl.
 1980, 19, 217. (b) Sainte, F.; Serckx-Poncin, B.; Hesbain-Frisque, A. M.;
 Ghosez, L. J. Am. Chem. Soc. 1982, 104, 1428.

⁽¹¹⁾ For preparation of alkylated 6H-1,3 thiazines and 4H-1,3 thiazines, see: Singh Harjit and Sing Paramjit, J. Chem. Soc., Perkin Trans. 1 1980, 4, 1013.

⁽¹²⁾ Ripoll, J. L.; Rouessac, A.; Rouessac, F. Tetrahedron 1978, 34, 19.

corded on a Varian MAT 311 spectrometer. Column chromatography was carried out on silica gel (Merck Art. 9385, Kieselgel 60). Melting points were determined on an RCH (C. Reichert) microscope with a Kofler heating stage.

General Procedure for the Preparation of 6H-1,3-Thiazines 3a and 3b. A mixture of 1a or 1b (4.85 mmol) in 30 mL of benzene and 3 mL of freshly distilled methyl vinyl ketone was heated at 140 °C (autoclave) for 5 h with stirring. The thiazine obtained was purified on a silica gel column (elutant, 80/20 petroleum ether/ethyl acetate; yield, 98%). Cycloreversion of 2 to 3a was carried out with an identical procedure to the previous one, 1a being replaced by 2 (yield, 98%).

5-Acetyl-2-phenyl-6H-1,3-thiazine (3a): ¹H and ¹³C NMR spectra were in agreement with data given in the literature.¹³

5-Acetyl-4-methyl-2-phenyl-6H-1,3-thiazine (3b): mp 75-77 °C; ¹ H NMR (CDCl₃) δ 2.4 (6 H, s, CH₃, COCH₃), 3.61 (2 H, s, CH₂); ¹³C NMR (CDCl₃) δ 25.1 (t, C⁶, J₁₃_{C-H} = 145 Hz), 113.6 (s, C⁵), 154 (s, C⁴), 164.9 (s, C²). Anal. Calcd for C₁₃H₁₃NOS: C, 67.50; H, 5.66; S, 13.86. Found: C, 67.93; H, 5.63; S, 13.94.

5-Acetyl-4-(ethoxycarbonyl)-2-phenyl-6H-1,3-thiazine (3c). To a solution of 1.14 g (4.3 mmol) of 1c in 30 mL of CH₂Cl₂ were added at 0 °C 2 mL of methyl vinyl ketone and 0.4 g (3 mmol) of AlCl₃. Stirring of the reaction mixture was continued at 0 °C for 3 h and then at room temperature for 12 h. After hydrolysis $(40 \text{ mL of H}_2\text{O})$ and decanting off the aqueous phase the thiazine was purified on a column of silica gel (elutant, 80/20 petroleum ether/ethyl acetate; crystallization from ethanol): mp 66-67 °C; yield 80%; ¹H NMR (CDCl₃) δ 1.37 (3 H, t, CH₃), 2.42 (3 H, s, COCH₃), 3.69 (2 H, s, CH₂), 4.38 (2 H, q, CH₂); ¹³C NMR (CDCl₃) δ 24.5 (t, C⁶, J_{13C-H} = 144 Hz), 118.6 (s, C⁵), 144 (s, C⁴), 165.8 and 167 (2 s, C⁴ and C²), 198.3 (s, C⁵). Anal. Calcd for C₁₅H₁₅NO₃S: C, 62.26; H, 5.22; S, 11.08. Found: C, 62.00; H, 5.22; S, 10.96.

General Procedure for the Preparation of 4-(Dimethylamino)-2-phenyl-4H-1,3-thiazines. 1 (5 mmol) was added at room temperature to the acetylenic compound (5 mmol) in 20 mL of CH_2Cl_2 , and the reaction was followed by TLC. The 4H-1,3thiazine was purified on a silica gel column (elutant; 60/40 petroleum ether/ethylacetate, crystallization from methanol).

4-(Dimethylamino)-5,6-bis(methoxycarbonyl)-2-phenyl-4H-1,3-thiazine (5a): mp 90 °C; yield 81%; ¹H NMR (CDCl₃) δ 2.45 (6 H, s, NCH₃), 3.88 (6 H, s, OCH₃), 5.80 (H, s, CH); mass spectrum, m/z 334 (M⁺), MIKE m/z 231, 199, CID MIKE m/z231, 216, 199, 188, 184, 172, 155, 141, 129, 113, 104, 98, 88, 84, 73, 60, 47, 44. Anal. Calcd for C₁₆H₁₈N₂O₄S: C, 57.46; H, 5.42; N, 8.37; S, 9.59. Found: C, 57.31; H, 5.45; N, 8.36; S, 9.33.

4-(Dimethylamino)-5,6-bis(methoxycarbonyl)-4-methyl-2-phenyl-4H-1,3-thiazine (5b): mp 101-102 °C; yield 81%; ¹H NMR (CDCl₃) δ 1.60 (3 H, s, CH₃), 2.40 (6 H, s, NCH₃), 3.88 (6 H, s, OCH₃); ¹³C NMR (CDCl₃) δ 80 (s, C⁴), 151 (s, C²). Anal. Calcd for C₁₇H₂₀N₂O₄S: C, 58.60; H, 5.78; N, 8.04; S, 9.20. Found: C, 58.45; H, 5.83; N, 8.09; S, 9.00.

4-(Dimethylamino)-4-(ethoxycarbonyl)-5,6-bis(methoxycarbonyl)-2-phenyl-4H-1,3-thiazine (5c): mp 83-84 °C; yield 91%; ¹H NMR (CDCl₃) δ 1.27 (3 H, t, CH₃), 2.48 (6 H, s, NCH₃), 3.90 (6 H, s, OCH₃), 4.27 (2 H, q, CH₂); ¹³C NMR (CDCl₃) δ 85.4 (s, C⁴). Anal. Calcd for $C_{19}H_{22}N_2O_6S$: C, 56.14; H, 5.45; S, 7.89. Found: C, 56.14; H, 5.47; S, 7.99.

1,3-thiazine (5d): mp 75-77 °C; yield 80%; ¹H NMR (CDCl₃) δ 2.45 (6 H, s, NCH₃), 3.84 (3 H, s, OCH₃), 6.02 (H⁴, s, CH), 7.93 (H⁶, s, CH); ¹³C NMR (CDCl₃) δ 72.2 (d, C⁴, J₁₃_{C-H} = 160 Hz), 116.6 $(s, C^5), 132 (d, C^6, J_{^{13}C-H} = 160 Hz), 154.3 (s, C^2), 164 (s, C^5).$ Anal. Calcd for C₁₄H₁₆N₂O₂S: C, 60.84; H, 5.83; N, 10.14; S, 11.60. Found: C, 60.90; H, 5.99; N, 10.02; S, 11.57.

3-(Dimethylamino)-1,2-bis(methoxycarbonyl)-2-propene-1-thione (6a). 5a (3 mmol) was heated for an hour in 30 mL of CH₂Cl₂. The reaction product was purified on a column of silica gel (elutant, 50/50 petroleum ether/ethyl acetate; crystallization from ethanol): mp 135 °C; yield 83%; ¹H NMR (CDCl₃) δ 3.13 (3 H, s, NCH₃), 3.50 (3 H, s, NCH₃), 3.73 (3 H, s, OCH₃), 3.83 (3 H, s, OCH₃), 8.24 (H, s, CH); ¹³C NMR (CDCl₃) δ 114.0 (s, C²), 162.1 (d, C³, J_{13C-H} = 176 Hz), 206.3 (s, C¹); mass spectrum, m/z231 (M⁺), MIKE m/z 231, 199, CID MIKE m/z 231, 216, 199,

4-(Dimethylamino)-2,3,5,6-tetrakis(methoxycarbonyl)-4H-thiopyran (7). A mixture of 1 g (4.3 mmol) of 6a and 610mg (4.3 mmol) of 4a in 30 mL of CH₂Cl₂ was heated at reflux for 48 h. After evaporation of the solvent, the reaction product was purified on a column of silica gel (elutant, 50/50 petroleum ether/ethyl acetate; crystallization from ethanol): mp 92-93 °C; yield 83%; ¹H NMR (CDCl₃) δ 2.28 (6 H, s, (CH₃)₂), 3.81 (6 H, s, OCH₃), 3.84 (6 H, s, OCH₃), 5.00 (H⁴, s, CH); ¹³C NMR (CDCl₃) δ 59.7 (d, C⁴, $J_{^{13}C-H} = 150$ Hz), 125.9 (s, C³-C⁵), 133 (s, C²-C⁶). Anal. Calcd for C₁₅H₁₉NO₈S: C, 48.24; H, 5.13; N, 3.75; S, 8.58. Found: C, 48.24; H, 5.08; N, 3.66; S, 8.59.

3-Acetyl-5-(methoxycarbonyl)-2H-thiopyran (8). A mixture of 500 mg (1.8 mmol) of ${\bf 5d}$ and 3 mL of methyl vinyl ketone was heated at reflux for 3 h. After evaporation of the excess methyl vinyl ketone, the reaction product was purified on a column of silica gel (elutant, 50/50 petroleum ether/ethyl acetate; crystallization from 90/10 petroleum ether/ethanol): mp 35 °C; yield 98%; ¹H NMR (CDCl₃) δ 2.45 (3 H, s, COCH₃), 3.66 (2 H, s, CH₂), 3.84 (3 H, s, OCH₃), 7.50 and 8.00 (H⁴ and H⁶, $J_{H^4-H^6} = 0.50$ Hz); ¹³C NMR (CDCl₃) δ 21.7 (t, C², $J_{^{13}C-H} = 146$ Hz), 122.5 and 124.6 (2 s, C³ and C⁵), 132.9 and 145.8 (C⁴, $J_{^{13}C-H} = 163$ Hz and C⁶, $J_{^{13}C-H}$ = 178 Hz). Anal. Calcd for $C_9H_{10}O_3S$: C, 54.52; H. 5.08; S, 16.17. Found: C, 54.40; H, 5.05; S, 15.52.

Registry No. 1a, 52421-65-5; 1b, 67229-59-8; 1c, 87108-97-2; 2a, 72856-29-2; 3a, 72856-35-0; 3b, 95482-64-7; 3c, 87109-03-3; 4a, 762-42-5; 4b, 922-67-8; 5a, 95482-65-8; 5b, 95482-66-9; 5c, 95482-67-0; 5d, 95482-68-1; 6a, 95482-69-2; 7, 95512-41-7; 8, 95482-70-5; CH2=CHCOCH3, 78-94-4.

Reaction of β -Nitroenamines with Electrophilic Reagents. Synthesis of β -Substituted β -Nitroenamines and 2-Imino-5-nitro-4-thiazolines

Takao Tokumitsu* and Takayuki Hayashi

Department of Chemistry, Faculty of Science, Yamaguchi University, Yamaguchi 753, Japan

Received September 18, 1984

 β -Nitroenamines are useful synthetic intermediates, and their reactivity is of interest in connection with that of β -aminoenones. The reaction of β -nitroenamines with carbon nucleophiles has been studied extensively.¹⁻⁸ In contrast, the reaction of primary and secondary β -nitroenamines with electrophiles has been little studied.⁹⁻¹¹ In a previous paper, we reported a convenient synthesis of the primary and secondary β -nitroenamines (1) from nitroacetone and ammonia and/or primary amines using titanium(IV) chloride as a catalyst.¹² In this paper, we

- (2) Gompper, R.; Schaefer, H. Chem. Ber. 1967, 100, 591.
- (3) Severin, T.; Kullmer, H. Chem. Ber. 1971, 104, 440.

- (d) Severin, T.; König, D. Chem. Ber. 1974, 107, 1499.
 (d) Severin, T.; König, D.; Severin, T. Chem. Ber. 1974, 107, 1509.
 (e) Severin, T.; Ipach, I. Chem. Ber. 1976, 109, 3541.
 (f) Severin, T.; Bräutigam, I.; Bräutigam, K. Chem. Ber. 1977, 110, 1669
- (8) Böchi, G.; Mak, C.-P. J. Org. Chem. 1977, 42, 1784.
- (9) Böhme, H.; Weisel, K. H. Arch. Pharm. (Weinheim, Ger.) 1977. 310.30.
- (10) Dabrowska-Urbánska, H.; Katrizky, A. R.; Urbánsky, T. Tetrahedron 1969, 25, 1617.
- Rajappa, S. Tetrahedron 1981, 37, 1453.
 Tokumitsu, T.; Hayashi, T. Nippon Kagaku Kaishi 1983, 88.
 Ganapathi, K.; Venkataraman, A. Proc. Indian Acad. Sci., Sect. A 1945, 22A, 343.

⁽¹⁾ Severin, T.; Brück, B. Chem. Ber. 1965, 98, 3847.